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Abstract

The goal of this paper is to give an efficient computation of the genus zero three-point Gromov—Witten invariants of Fano
hypersurfaces, starting from the Picard—Fuchs equation. This simplifies and to some extent explains the original computations of
Jinzenji. The method involves solving a gauge-theoretic differential equation, and our main result is that this equation has a unique
solution.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Gromov—Witten invariants compute “numbers of pseudo-holomorphic curves” in a symplectic manifold. They are
rigorously defined as integrals on moduli spaces of stable maps. Therefore it is difficult to calculate Gromov—Witten
invariants directly from the definition.

An alternative method of computation comes from mirror symmetry. Although the mirror symmetry phenomenon
is not yet completely understood, it suggests that Gromov—Witten invariants can be computed in terms of
coefficients of power series solutions of certain differential equations. The most well known example is the quintic
hypersurface in CP*; this is a Calabi—Yau 3-fold. Fano hypersurfaces are more elementary from the point of view
of Gromov—Witten invariants, and it was established by Givental that certain Gromov—Witten invariants in this case
are determined by the “Picard—Fuchs equation”. The Picard—Fuchs equation of the quintic hypersurfaces in CP* is
(9% — 5¢' (50 + 4)(50 +3)(59 + 2)(59 + 1)) ¥ (1) = 0.

A hypersurface M 1]§, of degree k in CPN~! is Fano if and only if N > k, and the Picard—Fuchs equation is

(3" — ke (kd + (k= 1) (kd + Dk + 1)) Y0) = 0.

Before Givental’s work, partial results on the quantum cohomology of Fano hypersurfaces had been obtained by
Collino and Jinzenji [4] and Beauville [2]. Subsequently, Jinzenji [8] observed that a simple ansatz leads to the correct
Gromov—Witten invariants and he obtained complicated but explicit formulae from this ansatz.
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The aim of this paper is to calculate the three-point Gromov—Witten invariants of a Fano hypersurface by using
the method of [1,7] primarily when N — k > 2 (which we assume unless stated otherwise). In this method, the
flat connection associated with the D-module D/(PF) is “normalized” by applying the Birkhoff factorization. We
shall show (as a consequence of Givental’s work) that this method produces the correct three-point Gromov—Witten
invariants.

The algorithm for the computation of three-point Gromov—Witten invariants from the quantum differential
equations was introduced in [7], and applied to flag manifolds in [1], and our treatment of hypersurfaces is broadly
similar. However, there are some special features in this case which make a separate discussion worthwhile. First,
the differential equations in this case are o.d.e., rather than p.d.e., hence the integrability condition plays no role.
Second, the o.d.e. which appears in the Birkhoff factorization can be integrated very explicitly, and this leads to
purely algebraic formulae (whereas the algorithm in [1] required the solution of large systems of p.d.e.).

Computationally, our method is similar to Jinzenji’s method, but considerably simpler. In Section 2 we review the
cohomology algebra of hypersurfaces of the complex projective spaces. In Section 3 we discuss the Gromov—Witten
invariants and the Dubrovin connection. The quantum differential system and Jinzenji’s method are discussed in
Section 4. In Section 5, we explain the loop group method and we compute a flat connection from a D-module which
is related to the quantum differential system. In Section 6, we discuss relations between families of connection 1-forms
and D-modules. The “adapted” gauge group is the most important object. In Section 7, we explain Jinzenji’s results
from our viewpoint and prove that our results agree with Jinzenji’s results. We also prove that our results produce the
Gromov—Witten invariants.

2. Hypersurfaces in the complex projective spaces

If we consider the hyperplane
H= {[ZO, o zno11 € TP g = o}

of CPN—! as a smooth divisor, the line bundle O(1) over CPY~! can be obtained from the divisor in the general
theory of complex geometry. The line bundle O(1) is called the hyperplane bundle. The first Chern class b of the
hyperplane bundle O(1) generates the cohomology algebra H*(CPN~!; C) of CPN~!. The tensor product of k
copies of the line bundle O(1) is denoted by O(k). The zero locus of a holomorphic section of the line bundle O (k)
is called a hypersurface of degree k in CP¥~! and the zero locus is denoted by M ]Ii,

The C-linear space H*(MX,) of all pullbacks of cohomology classes via the inclusion map ¢ : M% — CPN~!
is a subalgebra of the cohomology algebra of M llﬁ, The subalgebra H*(M ]’ﬁ,) is generated by the pullback of the
cohomology class b. The pullback is also denoted by b. Let b; (i = 1,..., N — 2) be a cup product of i copies of b
and bg = 1. The vectors by, . .., by_» form a C-basis of the subalgebra Hﬁ(Mlk\,).

We assume that N > 5. Under this assumption, the Lefschetz theorem implies that the homomorphism ¢, :
Hz(Mlli,; 7) — H>(CPN~!;7Z) = Z[CP'] induced by the inclusion is an isomorphism. Taking the generator A
of Hy(M¥,; Z) with 1,A = [CP'], we identify the second homology group H»(MX,; Z) with Z via the isomorphism.

There are two nondegenerate bilinear pairings over C; one is the Kronecker pairing (the usual pairing)

(, ) H(My;C) @ Hy(My;: ©) — € (x,d) =fx
d
and the other is the Poincaré pairing

(.): H' (M) ® H*(My) — C; (x,y)szny.

MN
Note that g,y = (by, by) = k8.
3. Gromov-Witten invariants

The subalgebra H*(M 1]@) is a Frobenius algebra in the following sense:
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e The subalgebra H*(M Ilﬁl) is a commutative associative C-algebra with unit 1.
e The pairing (, ) is nondegenerate.
e Forallx, y,z € Hn(Mlli,), (xUy,2) =&, yU2).

Deforming the multiplicative structure on H*(M Ili,) by a parameter #, we quantize the Frobenius algebra. To do
this, we need the Gromov—Witten invariants.

We identify the unit 2-sphere S? in R* with the Riemann sphere C U {00} via the stereographic projection from the
north pole

x| +1ix2

§?2 — CU({oo);  (x1,x2,X3) > .
1—x3

Then S? is a Kihler manifold. If we take a homology class d € H>(M%;7Z) and three cohomology classes
X0, X1, Xoo € H Ii(Mlli,) which are the Poincaré duals of submanifolds Xg, X1, Xoo of Mj’i, respectively, then the
(three-pointed genus zero) Gromov—Witten invariant GW;(xo, X1, Xo0) is roughly the number of holomorphic maps
u:8>—>M jlﬁl which have the following properties:

u(x;) € X; fori=0,1,00€e S*> and u.[S’]=d.

For the rigorous definition, we need to study the moduli space of stable maps [5,9,11]. The Gromov—Witten invariants
have the following properties.

Linearity axiom. For any d € Hy(M k. 7), the map GW, : H¥ (M 1’;)®3 — C is linear in each variable.
Effectivity axiom. Ifd <0, GW,; = 0.
Grading axiom. Let x1, x2, x3 be homogeneous cohomology classes. Then GW4(x1, x2, x3) = 0 unless

3
> degx; = dim M}, + 2(ci (M), d) = 2(N — 2) + 2(N — k)d.
i=1

Symmetry axiom. Any permutation o of {1, 2, 3} preserves the Gromov—Witten invariant:
GWy(x1, x2, x3) = GW4 (X5 (1), X5(2)> Xo (3))-

Zero axiom. For any x1, x3, X3 € Ht(Mlli,),

GWo(x1, x2, x3) = / x1 Uxp Uxs.
My

Define the quantum product *; on M 1]§, by

(% y,2) =Y GWy(x,y, 2)e”" forany z € H*(My).
d

Here ¢ € C is a parameter. Since the degree axiom implies that the sum is finite when N —k > 1, the quantum product
is well defined. According to the theory of the gravitational descendents, the subspace H*(M 1]§,) is closed under the
quantum product *; and forms a Frobenius algebra with the Poincaré pairing for every t € C (see [10] Section 1). The
quantum product makes the product bundle over H2(MX,; C) with fibre H* (M 1]§,) an algebra bundle. Namely the fibre
HY(M Ili,) ontb € HX(M¥; C) with the product *; and the Poincaré pairing is a Frobenius algebra.

If we denote by ¢ the exponential function e’, then the quantum product x *; y can be regarded as the cohomology
class with coefficients in polynomial C[q]:

X4y = Z ZGWd(x, y, bﬂ)g“”bqu,
wv d

where (g"") is the inverse matrix of (g,,). Therefore we think of the quantum product *; as a product “o” of the
space H¥(M 1I§/) ® C[q]. The algebra (H M Ili,) ® Clql, o) is called the small quantum cohomology and denoted by
QH*(M}).
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The multiplication structure of the algebra bundle over H2(M¥; C) with fibre H j(Mjlﬁ,) can be regarded as

properties of a connection on the bundle which is called the Dubrovin connection. The Dubrovin connection is defined
by

1
Vi =d+ & (bx)dr.

Here h € C* is a parameter. If we think of the class b, as a constant section of the bundle, then by, ..., by_; form a
global frame. The connection 1-form of the Dubrovin connection with respect to the frame is given by

Z GWa (b, bo, bv)gv’oedt e Z GWy4 (b, by, bv)gv’oedt
v.d v,d

1
2 = A : : dt.
ZGWd(b, bo, bv)g”’Nfzedt e ZGwd(b, by_a, bv)gv,Nfzedt
v,d v.d

Note that the associativity of the quantum product implies the flatness of the Dubrovin connection.
4. The quantum differential system

Let V* be the dual connection of the Dubrovin connection V{%. The system V* ¥ = 0 of differential equations for
¥ is called the quantum differential system. The connection form of the dual connection V* is —(.ng)T with respect to
the dual basis b°, . . ., bV =2 of the basis bo, ..., by_»> for the Poincaré pairing. Putting ¥ = ZN_

2 o
m=0 1pN—Z—mbN 2 ",
the quantum differential equation is explicitly given by

RN =

=Y O+ ) LU mvpa(®) (m=1,...,N —=2),
at =

0YN_2

o8
FYa D L™ YNk (t),
! =1

where L, = k™' GWa (b, bx—2-m, bm—1+(N—k)d)-
The following important fact was proved by Givental in [6].

Theorem 4.1 (Givental). Assume that N — k > 2. The Gauss—Manin system is equivalent to the Picard—Fuchs
equation:

<3N—l —ke' (kD + (k= 1)...(kd +2)(kd + 1)) Yo(r) =0,

where 0 means %.

Jinzenji proposed a method for completing the Gromov—Witten invariants of Fano hypersurfaces from the
Picard-Fuchs equation in [8]. We explain briefly Jinzenji’s method for the Fano hypersurface M53.
The Gauss—Manin system for Mg is

oo

5 = Y (1),
0
% = Yo (t) + Lye' Y1),
0
% = Y1) + Lie' v (1),
% = +Lye" Yo (t) + Lie* Po(t).

Reducing this system, we have

(0 = e (Wh+ L]+ Lpo* + QLY + LDo + LY) = ¥ (L] = L)LY ) yo = 0.
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Givental’s theorem implies that this differential equation becomes

(34 —3¢'(30 +2)(39 + 1)) o = 0.
Thus we conclude that

Ly=6, Li=15  Li=6, L}=36.

5. Birkhoff factorization

We modify the quantum differential system with the parameter 4 as follows:

0YN-—2—
h———"" = YN 1m0 + ) L™ Uy 1 om v (D),
at =
dYN—2 d di
h 5 ;Loe YN—1-(N—k)d (1),
(wherem =1, ..., N — 2). We shall use the following modification of Theorem 4.1:

Proposition 5.1 (/6] Corollary 9.2). Assume that N — k > 2. The quantum differential system with the parameter h
is equivalent to the Picard—Fuchs equation with parameter h:

((ha)N*‘ —kgh* ko + (k = 1)) ... (kd + 2)(kd + 1)) Yo(t) =0,
where g = é'.

In this section and the next section, we will show that the Picard—Fuchs equation with % gives the Gromov—Witten
invariants by using the Birkhoff factorization, as in [7,1].

Let A = C|g] be the polynomial ring generated by g and D be the module generated by 49 over A(h). First of all
we consider the D-module M" = D/(PN-*), where (P"-) is the left ideal generated by the operator

PYKR = (ho)N Tl — kgh* (ko 4 (k — 1)) ... (k9 +2)(kd + 1).

Second, we introduce a family of (flat) connection 1-forms (Z{,‘F = %Rh (@)dt.Put Py =1, Py =ho, ..., PNn_2 =
(ha)N—Z. Then the equivalence classes [Py], ..., [Py—2] form a A(h)-basis of the D-module M". We define R" (9)
by

N-2
hd(LPol, ..., [Py—2]) = (LP0), ... [Px-2DR"(q), ie. hilPal=") (R"(9)][Ps].
B=0

Then Q}?F = %Rh(q)dt is of the form

1
ok = SO+ 00+ ho1 4o hE=20; s,

where w, 6, ..., 8, are matrix-valued 1-forms independent of 4.

Finally we obtain a connection from QE’,’F by using the Birkhoff decomposition which is a candidate Dubrovin
connection. We consider / as a parameter in S! C C. Since Qli’F is flat, there is a map L from an open subset V of C
to the loop group AGL(CN~!) such that Q{,’F = L~'dL. The loop group AGL(C"~1) is the group of all smooth map
from S! to GL(CV ).

Let L = L_L be the Birkhoff decomposition of L, where L_ extends holomorphically to 1 < |h| < co and L4
to|h| < 1,and L_|p=0 = I. In other words, L_ and L have expansions in 4 as follows:

1 1
Lo=I+ A+ Aot Ly= 0ol +hQi+h Qs+ ).
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Note that the Birkhoff decomposition exists if and only if L takes values in the big cell of the loop group. Since the
big cell is an open dense subset of the loop group, we can choose y such that y L(q) belongs to the big cell for all g
in a sufficiently small set V.

If we expand Q" = (L_)"'dL_ as a series in h, then only negative powers of & appear. On the other hand, we
have

(L) 'dL_ = @rLhH'dwLh
= (@417 (@)L + Ld:h)
= Lo(L7'dL) LT + Lad(LT

=L (%w +6p+ -+ hp9p> L, + L+d(L_T_1)-
Since the negative powers of h disappear except for %Qoa) Qo Uin the above expression, we conclude that oh =
%QowQa ! In the next section we will see that V* = d + (" agrees with the restricted Dubrovin connection
Vg, where the restricted Dubrovin connection is the restriction of the Dubrovin connection to the trivial bundle
H j(va) x H*(M k. C) - HYM 1]§7)~ The restriction is well defined because the quantum product on H tM Ik\,) is
closed (see Section 3).

It is difficult to execute the Birkhoff decomposition in general. Note that we need only L. to work out 2" Since
the non-negative powers of 4 in (L_)~'dL_ disappear, we can obtain differential equations for L :

Proposition 5.2 ([1]). Ly = Qo(I +hQ1 + h>Qs + - - ) satisfies the following differential equations:
(Lo) dQo = Qo0 + [Q1., w),
(£1)dQ1 =01 +[Q1,60] + [Q2, 0] — [Q1, w]Q1, and
(L) dQi =0; + 016i—1+ -+ Qi—1601 +[0Qi, 6] + [Qi+1, 0] — [Q1, 0] Q;

fori > 2.

Here, £; denotes the equation for Q;.

To calculate L we introduce some notation. Let E; ; be the N — 1 x N — 1 matrix with (i, j)-component 1 and
all other components zero.

For an integer n with [n] < N — 1, we definean N — 1 x N — 1 matrix diag, (a1, ..., an—2—a|) by
N—-2—n
Y aiEini (n=0),
diag,(ai,...,an—2—jn) = Nl—zzh-n

Z a,-E,',,,,i (n <O).
i=1

We call this an n-diagonal matrix. The identity E; ; Ey g = 8 « E; g implies that the product of an n-diagonal matrix
and an m-diagonal matrix is an (n + m)-diagonal matrix.
The matrix diag_;(1, ..., 1) is denoted by /_;. For a matrix A = (a;, ;) and non-negative integer n, we call the
matrix diag, (a1,14n, 42,24n, - - - , AN—2—n,N—2) the n-diagonal component of A.
Furthermore we define non-negative integers kff as in the previous section by
k=1
kT Tkx + ) =2k X1k ox*=2 4 pakx 4.
j=1
The Picard-Fuchs operator of M 1]% is described in terms of )Li.‘ as follows:
PYk — (N1 — g (x@] (D) ka4 4 A’éhk‘1> .

If there is no danger of confusion, we omit the upper suffix of Af.
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Recall that P; = (hd)". We have [dPo] = #[P1], ..., [0Py—_3] = ;[Py—2] and

1 _ 1 _

[0Py—2] = L)Y ] = S h1gIPer] + Ae2glPeoal + - + h*2r0g [ Pol.

Thus
1

ok = ZO+ 00+ ho1 4o+ h*=26, 5,
where

w={I_14+qR_1)dt = 1_1dt + R_1dq,

0o = Rodq, ...,60k—2 = Ry_2dq,

R, = diangkJri ©,...,0, Ag—2—i).
Note that gdt = dq because g = €'.

The following properties will be useful in the calculation of L.

Proposition 5.3 ([7]). If we set degh = 2 and degq = 2(N — k), the following statements hold.

(i) If the (a, B)-component of L4 does not vanish, it has degree 2(8 — o).

(ii) If the («, B)-component of Q; does not vanish, it has degree 2(f — o — i).
(iii) There is a matrix X such that Qo = exp X and the n-diagonal component of X vanishes forn < 1.
(iv) Fori > l and n <i + 1, the n-diagonal component of Q; vanishes.

According to the above proposition, we may assume that the Q; are of the form

Qo=1+qQ+q°Q5+--=1+) 4¢“0f,

a>1

Q=) q"0F (=1,

a>1

where QY is a constant (i + (N — k))-diagonal matrix. Thus Q% vanishes if « is greater than (N — 2 — i) /(N — k).
Before solving the equations for L, we note the following identities:

@) RjQ?‘ =0G,a>0, j>-—1).
i) 101, @] = [0}, I-11dg + X,zy g% (1FF! 111+ QR ) dg.

First, we consider the equation (Lg). The left hand side is d Qg = Zaz 1 ag® ' 0%, while the right hand side is

Qo(6 +1Q1.0) = Qo ((Ro +loh L+ Y g (1ol + QfR1)> dg

B>1

= (Ro+10}. 1-1Ddq +q (Q§(Ro + [0}, 1) + 10}, 111+ O} R-1) dg

+Y q ([QT“, 1114 QY R_1 + Qf (Ro + [0}, I-1])

y=2
+ > Q(o)l([QllgH,I—l]‘FQlfR—l)) dq.
a+p=y
Thus we have

Q4= Ro+1[0].11].

205 = Q4(Ro+[Q1, I-1) +[QF, I-11+ Q1 Ry,

yQy = 10, 111+ Q) 'R + Q) (Ro + [0}, I11])

+ Y osaett L+ ofR) (v 23).

a,p>1, a+p=y—1
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Second, we consider the equation (£;). The left hand side is d Q| = Zazl ag®! 0%dq, while the terms in the
right hand side are
01 = Ridq,
[Q1.60] =) q%0F Rodg

a>1

(02, 0] = [0}, I-11dg + Y _q* (105*!, 111+ Q5 R-1) da,

a>1
(010101 =Yg}, 1-110%dg + Y a7 Y (101" 111+ 0fR-1) Ofdg.
ax>1 y=z2  atf=y

Therefore

Ol =R +103, I1],
201 = Q| Ry + Q3. 111+ QYR_y — [0}, I_110].
y0l = Q1 ' Ro+10), .11+ Q) 'Ry — [0}, 1-110) !
- > (gt ofRa) 0f (v 23,

wpzl. atp=y-1

Finally, we consider the equation (£;). The right hand side isd Q; = ) _,-; @g® -1 0%dgq, and the terms in the right
hand side are

9,' = R,-dq,
Qibij =) q*0Q%Ri_;dq,
a>1

[Qi, 601 =) q* Of Rodg,

a>1

(i1, 0] = [0}, I-1Mdq + Y g (1O 111+ 0% Rt da,

a>1

(01010 = g0}, 1-110%dg + Y g7 > (104" 111+ QR-1) 0fdg.

a>1 y>2 a+p=y
Thus
0! =R +10},,, 111,
i+1
207 =) OiRi_j+107,, 111 - 10}, 1110/,
j=1
i+1

—1 —1
yQ] =Y O Ri-j+10l,,, I1-10}, 1110}
j=1
- > (gt ofRa) 0f (v 23,
a,p=1, a+p=y—1
Looking at the above identities, we see that Qg’ is determined by the following information:

M 0¥ (@>y)
(i) 0f (i<i, 0<p=<k-2).

Since Q) , = Rk—» = diagy_,(ho) = diagy_,(k!), we can determine L} = Qo(I +hQ + -+ h*2Qy_») from
0}, explicitly.
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Example. We apply the above results for M75 . Its Picard—Fuchs operator is
P73 = (h9)® — 5gh*(50 + 4)(50 + 3)(59 +2)(50 + 1).
First we calculate Qlﬁ’F:

120gh3
1250gh>
4375¢h
6250q
3125q/h
h 0

ok = dr.

SO0 oo o o

1
Thus we have

R_; = diag,(0,0,0, 0, 3125),
Ry = diag,(0, 0, 0, 6250),

Ry = diag;(0, 0, 4375),

R, = diag, (0, 1250),

R3 = diag5(120).

Second, we calculate Q; and L. We can put
Qo=1+4q0)+4°Q5,
01=90i+4°01,
02=90;.

03 =q05.

where Qf is a constant (i + 2or)-diagonal matrix. We can determine them in the following order:

0} = R3 = diags(120),

Q) = Ry + [0}, 111 = diag, (120, 1130),

01 = Ry +[04, I_1] = diag;(120, 1010, 3245),

04 = Ro+ 101}, I_1] = diag,(120, 890, 2235, 3005),

1
0% = 5 (10}, Rol +10}, R-11 - [0}, 1-110}) = diag; (367 800),

—_ N

0=~ (Qg) (RO +10!, 1_1]) +10), R\ 1+ 102 1_1]) — diag, (318000, 2731 450).

[\

Thus we have

Qo =1 +q0Q)+q*0f
= I + gdiag, (120, 890, 2235, 3005) + qzdiag4(318 000, 2731450)

1 0 120¢ 0 3180002 0

01 0 890g 0 273145042
_lo o 1 0 2235¢ 0
“lo o o 1 0 3005¢ |’

00 0 0 1 0

00 0 0 0 1
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and

Ly = Qo +hQy +h* Qs+ 1 03)

1 0 120¢ 120gh 120gh>+318000g> 120gh> + 757200¢°h

01 0 890g 1010gh 1130gh* 4 2731 4504>
1o o 1 0 2235¢ 3245¢h
“lo o o 1 0 3005¢

00 0 0 1 0

00 0 0 0 1

Finally, we calculate Q"

)
=
|

_ 1 -1
EQO(U(QO)

1
—Qo(I-1 +qR_1)(Qo)'dt

h

0 120¢ 0  2112004> 0 313200004

1 0 770q 0 692 5004 0
_Ilo 1 0 1345¢ 0 211200g°
k|0 0 1 0 770q 0

0 0 0 1 0 1204

0 0 0 0 1 0

We will see that 2" agrees with the restricted Dubrovin connection .QS.

Example. We apply the above results for M§ .
P> = (hd)* — 4gh> (40 +3)(40 +2)(40 + 1).

First we calculate .Q}I}F:

0 0 0 24gh®

w |yr 0o 0 176¢m
=0 yn o 3sag |¥

0O 0 1/h 256g/h

Thus we have
R_; = diag(0, 0, 0, 256),
Ro = diag,(0, 0, 384),
Ry = diag, (0, 176),
Ry = diag;(24).

Second, we calculate Q; and L. We can put

Qo=1+qQy+4q*Q5+4° Q5.
Q1 =40} +4°0i,
02=40;.

where Q;?‘ is a constant (i + «)-diagonal matrix. We can determine them in the following order:

0} = Ry = diag;(24),
0l = Ry + 101, I_1] = diag,(24, 152),
0 = Ro + 1[0}, I_1] = diag, (24, 128, 232),

663
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1
0% = 5 (10} Rol + 104, R-1] ~ [0}, 1-1]0}) = ding;(5856).
1
2

03 =5 (b (Ro+10} I-11) + 10}, 111+ Q1 R-1) = diag,(4464,31 376),

1
0} = 5 (10} 1-1+ Q1R + Q§(Ro + [0}, 11D + Q41 0} 111+ 01R-)
= diag;(1109376).

Thus we have

Qo =1+q0y+49°Q5+4°Q;
= I + qdiag, (24, 128, 232) + ¢°diag, (4464, 31376) + ¢>diag;(1 109 376)
1 24q 4464¢%> 11093764°

o 1 128¢ 313764
10 o 1 232g ’
0 0 0 1

and

Ly = Qo(I +hQi+h*Q2)
1 24q 24qh +4464¢> 24qh* +9504¢°h + 1109 3764°

o 1 128¢ 152gh + 31376¢>
10 o0 1 232¢
0 0 0 1

Finally, we calculate Q"

)
=
I

1 —1
EQow(Qo)

24q 3888¢> 504576¢° 183237124%
11 104g  13600¢>  504576¢°

| o 1 1044 38884
0 0 1 24q

n fact, " does not agree wi e Dubrovin connection . But we will see that the modified connection
In fact, 2" d tag th the Dub tion 2. But 11 see that the modified t

0 3888¢% 504576¢° 183237124*
41 A1 2 3
4 on L1 80g 136004 5045762q
h h|o 1 80g 3888¢
0 0 1 0

agrees with (21’)1.

The above algorithm can easily be implemented in Maple,! Mathematica etc. It is more elementary than the method
of [8,3].

6. Adapted gauge group

There are three important ingredients of the theory, i.e., D-modules (with adapted basis), “adapted” systems of
differential equations, and “adapted” (flat) connections. These are closely related to each other.

L Maple program can be found at http://sakai.blueskyproject.net/via_dmod/.


http://sakai.blueskyproject.net/via%5Fdmod/

H. Sakai / Journal of Geometry and Physics 58 (2008) 654—-669 665

D-modules with adapted basis
(changing adapted basis)

A

reduced operator

action of 0

reduced equation

adapted families of (flat) connections on
(adapted gauge transformations U)

adapted systems of o.d.e.
(changing unknown functions)

Let 7 be a coordinate function on C and ¢ = ¢’. We consider families of connections and the gauge group on the
trivial bundle C x C¥~! — C. The space of connection 1-forms on the bundle is the space of End(C"~!)-valued
functions on C and the gauge group is the space of GL(CY~!)-valued functions C. Therefore if we think of & as the
loop parameter, then the space of families of gauge transformations is identified with functions on C with values in
the loop group AGL(CN—1).

A matrix-valued function A in g and £ is called homogeneous if the n-diagonal component of A has degree 2n for
each n. A AGL(CY~")-valued function U on C is called adapted if U satisfies following properties.

(P) U is a GL(CN~!)-valued polynomial in ¢ and h.

(H) U is homogeneous.

(I) Uly=o = I. (initial condition)

Let U be a AGL(CVN~1)-valued adapted function on C. We can easily compute the inverse of U. The equation UV = |
is equivalent to UpVy = I and Z,Hﬂ:y UyVg =0fory > lif weput V = ij;oz Vu, where U, and V,, are the
a-diagonal components of U and V, respectively. The first identity and Uy = I imply Vjy = I and the second identity
determines V, inductively. It follows from this construction that V is adapted. Therefore the space Gap of adapted
AGL(CN~1)-valued functions is a subgroup of the gauge group which is called the adapted gauge group. The adapted
gauge group acts on the space of families of connection 1-forms in the same way as same as the gauge group.

vt =uvldv + v,
where U € Gap and 2" is a family of connection 1-forms.

6.1. An adapted family of connection 1-forms

A family of connection 1-forms 2" is called adapted if 2" satisfies following properties.

(P) There is an End(CN~1)-valued polynomial R = R"(g) in ¢ and h such that 2" = %Rh (g)dt.
(H) %Rh (g) is homogeneous.
I R"0)=1_.
(N) The (—1)-diagonal component of R"(¢) is I_;. (normalization)
We denote by Aap the space of adapted families of connection 1-forms. Since d = 9/t = ¢qd/dq preserves

degree, for U € Gap and 2" € Aap the family of connection 1-forms U *" is also adapted. In other words, the
adapted gauge group Gap acts on the space Aap of adapted families of connection 1-forms.

Theorem 6.1 (Uniqueness). If 2", Qé’ € Aap are %-linear (i.e. hQ2!, hﬁé' are independent of h) and adapted gauge
equivalent, then Q2 = Qg’
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Proof. Let U € Gap such that oh=vu *Q]h. Since U is adapted, U can be written as
U=00(1+h01+1 01+ +h"0,)

for some integer p. Here Q,- is independent of 4. Note that Ul,—o = I implies Qo|q=0 = [ and Qi|q=0 = 0.
Comparing coefficients of powers of 4 in the identity

dU =UQ — oty
gives the system

2 = 00 0y

dQo = QolQ1, h2}],

A0y =[0Qut1, hB1 =101, 12%10e (@ =1,...,p).
Here Qp-i—l = 0. By the following Lemma 6.2, QQH = 0 implies that Qa vanishes fora = 1, ..., p since [Ql, h()zh]
is homogeneous. Q1 = 0 implies that d Qo also vanishes. Since Qolqzo = I, we conclude that Qo = I. Thus
u=1. 0O
Lemma 6.2. Let A = A(q) be a homogeneous End(CN~")-valued polynomial in q such that A(0) = 0. If an
End(CN—YY-valued polynomial X = X (q) satisfies the following two conditions, then X = 0.
(i) dX = AX.
(ii) There is an integer m such that the n-diagonal component of X has degree 2n + 2m for each n.

Proof. Let us write A and X as finite sums as follows:
A=) "q"Aw. X=) ¢“Xa.
a>0 a>0
Note that the initial condition on A implies Ag = 0. The equation can be written as
yXy= Y AgXp (y=012,..).
a+p=y
We have Xo = 0since 0 = X + Ap. If Xg =0for B =0, ..., y, then the identity

Y
¥+ DXys1 = ) Agr-pXp + AoX 11
=0

implies X, 1 = 0 because of A9 = 0. By induction on y, we conclude that X, = O forall y,ie., X =0. [
6.2. An adapted system of ordinary differential equations

We consider the system d® = &£ (with parameter /) of ordinary differential equations, where & =
(@0, ..., oN—2). The system d & = P2" is called adapted if £2" is an adapted family of connection 1-forms.

If we introduce new unknown functions ¥ = ®U with U € Gap, then the system of o.d.e. is equivalent to a new
adapted system of o.d.e. d W = @ (U* "),

An adapted system can be reduced to an ordinary differential equation. There is an End(C" ~!)-valued polynomial
R =R"(q) = (r"‘!ﬁ)Ofoz,ﬁfN—Z in ¢ and h such that 2" = %Rh(q)dt. Since 74, = 0 for o > B + 1, the system is
written as

B+1
hwzagora,ﬂwa (,3:0”N_2)’

where gy _1 = 0. Because rg11,5=1(8=0,..., N —3),

8
dp
Ppr1 =h=—L = ropga (B=0.....N —2).
a=0
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For each B8, g can be written in terms of ¢g and its derivatives:

B
(P) There exist polynomials og , in ¢ and & so that g = ) og , h” aaV t‘ﬁ .

(H) For each 8 and y, og,,, is a homogeneous polynomial of degree 2(8 — ).
() If 8 > y, thenog , |g=0 = 0.
(N) 0B, = 1.

If the above conditions hold for ¢y, . .., ¢g, then

B B o
ad ¥ @o 97 @o
— h Y _ 14
0p+1 = ho (;:Oaﬂ,yh o7 ) O?:O”a,ﬁ ;:O%,yh a7

ELARN B 9o B 97
— p+12__¥Y By _ y 07 ¢0
= op.gh 9tB+1 + Z opy—1 +qh 9q ;ra,ﬂ%y h 317

B
0030
+ <61h 82 - Zm,;s%,o) 0.

a=0

Since degry,p = 2(B —a + 1) and degog ,, = 2(B8 — a + 1), the conditions hold for ¢g 1.
In particular p_; = 0. Therefore ¢ satisfies the following o.d.e.:

(BNt on—tn—2h)¥ 2 -+ o1 (D) + on-1.0) @0 = 0.

The above o.d.e is called the reduced equation of the system.
6.3. A D-module and an adapted basis

Let A = C[g] and D be the module generated by 19 over A(h). We consider a D-module M" = D/(P) for some
differential operator P € D. If the order of P is N — 1, the rank of M"is N —1 over A(h). We assume that there exist
homogeneous polynomials a, of degree 2« such that P = (hd)V~! + Zévz_l ag(h)N=1=% Let Py,..., Py_2 € D

be differential operators such that [Pg], ..., [Py—2] form a A(h)-basis of M". We say that [Py], ..., [Py—2] form an
adapted (A (h)-)basis if the differential operators satisfy the following properties.

(P) There exist polynomials cg ,, in ¢ and & so that Pg = Zﬁ:o cg,y (hd)Y.

(H) For each 8 and y, cg,, is a homogeneous polynomial of degree 2(8 — ).

(I) If 8 > y, thencg ylg=0 = 0.

(N) Cg.p = 1.

For example, [1], [A0]..., [(hB)N_z] form an adapted basis. A D-module M = D/(P) with an adapted basis
[Pol, ..., [Pny—2] defines a family of (flat) connection 1-forms 2" as in Section 5. Let [Pé], el [PI’\,_Z] be another
adapted basis of M”. The adapted conditions imply that there exists an adapted gauge transformation U € Gap such
that (Pg, ..., Py_,) = (Po, ..., Py_2)U. The family (' " of connection 1-forms associated with the adapted basis
[P(;], e, [P,’\,fz] agrees with U *oh, Conversely, an adapted family 2" of connection 1-forms defines a D-module
M and an adapted A(h)-basis as follows. There is an End(C" ~!)-valued polynomial R = R"(q) = (ra,p) O, f<N—2

in ¢ and & such that 2" = %Rh(q)dt. The differential operators Py, ..., Py_1 are defined inductively as follows.

B
Po=1,  Pgi=hdPs— Y rapPu (B=0.....N —2).

a=0

We define a D-module M" by D/(Py—1) and we call the operator Py_1 the reduced operator of 2", Asin Section 6.2,
[Pol, ..., [Py—2] form an adapted A(h)-basis of M, By the definition of the operators Py, ..., Py_2, we have

hd([Po), ..., [Py-2]) = ([Po], ..., [Pn-2DR" ().
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Lemma 6.3. Let M" be a D-module D/(P) of rank N —1 and 2" an adapted family associated with an adapted basis
[Pol, ..., [Pn—2]. Then the reduced operator of " agrees with P. In particular, the reduced operator is independent
of the choice of the adapted basis.

Proof. Let P/ = (hd)Pn_p — Zg;oz ra.n—2(hd)® be the reduced operator of 2. By the definition of 2" =

1
7 (ra*ﬂ)05a,ﬂ§N—2 dt, we have

N=2
[(hd)Py_2] = {Z ra,N_g(hB)“:| , ie [P1=0.

a=0

Since the monic polynomial P’ € A(h)[hd] has order N — 1, P/ must agree with P. [

Theorem 6.4 (Equivalence). Let Q{‘, .Qé’ € Aap. Then th and Qé’ have the same reduced operator if and only if th
and .th are adapted gauge equivalent.

Proof. First, we assume that .th and Q;’ have the same reduced operator. Let PY, ..., Pg‘,_l be the operators
associated with !2;’ for « = 1,2. By the assumption, P = P},_l = P]%/—l‘ Since two bases [Pol], ~'-»[P1{/—2]
and [Poz], ...,[PI%,_2] are adapted bases of the same D-module M = D/(P), there exists an adapted gauge
transformation U € Gap such that ((P{],....[Py_,]) = ((P}],....[Py_,DU. If Rl(g) is a matrix-valued
polynomial in ¢ and h such that 2! = 1R!(q), then hd([PE],...,[PE_,)) = ([PZ],....[P%_,DR!(g) for
o = 1, 2. Therefore we conclude that Qé’ =U *Q{’.

Next, we assume that there exists an adapted gauge transformation U € Gap such that Qf and (25’ Let M” with
[Pol], A [P}bfz] be the D-module with the adapted basis defined by .th and P;l;q the reduced operator of th.
Define an adapted basis [Poz], ey [PI%]_Z] by (P2, ey PI%,_Z) = (P, ..., P]{,_Z)U. Then the adapted family Qé’
agrees with the adapted family defined by the adapted basis [POZ], e, [P,%,fz] of M = D/ (P]Ll). According to
Lemma 6.3, the reduced operator of Qé’ agrees with P]{,_l. O

7. Relation between Birkhoff factorization and Jinzenji’s results

Recall the quantum differential system (with parameter /) for M 1”‘\,:

YN _2—
h ¥ » o= YN—tmm () + ZL;inqd‘/’N—l—m—(N_k)d(t),
d>1
0YN-2
" wi?t :ZLg‘ld‘ﬂN—l—w—k)d(t),
d>1

(wherem =1, ..., N —2). Note that degh = 2 and deg g = 2(N — k). We can write the above system of o.d.e. with
the restricted Dubrovin connection Q]g € Aap:

dv = w0k, where ¥ = (Yo, ..., ¥n-2).

Theorem 4.1 says that the reduced operator of Q]g at h = 1 agrees with the Picard—Fuchs operator 3V~ — kg (kd +
k—1)---kd+1Dif N—Fk=>2.

Theorem 7.1. Letr 2" € Aap be an adapted family of connection 1-forms whose reduced operator agrees with
PNK = (ha)N=1 — kgh*=1 (kd 4 (k — 1)) ... (kd + 1). If 2" is h='-linear; then 2" = 0.

Note that we have the adapted family Q{)’F € Aap, whose reduced operator agrees with PV-¥. Using a matrix-
valued function L which satisfies 0, = L~'dL, 2" is defined as (L_)~'dL_ in Section 5. Here L_ is the first
factor of the Birkhoff factorization of L = L_L. Since Ly € Gap, .Q{,’F and 2" are adapted gauge equivalent.
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Proof. Note that 2" is adapted and #~!-linear. According to Theorem 6.4, Q{)IF and 2" has the same reduced operator
PNk because Q{,’F and 2" are adapted gauge equivalent. Therefore (" satisfies the conditions of the theorem.

If 2" satisfies the conditions of the theorem, then Theorem 6.4 says that Q" and Q" are adapted gauge equivalent.
Moreover the fact that 2 and 2" are h~!-linear implies 2" = (" because of Theorem 6.1. [

However the reduced operator of the quantum differential system for M Ik\, differs for the cases N — k > 2 and
N — k = 1; Jinzenji considered an adapted and 4~ !-linear family QJh € Aap whose reduced operator agrees with
PN* and he named the coefficients of (th the virtual structural constants. Moreover using Beauville’s result [2] for
the case of N —2k > 0 as the initial data, he gave explicit formula for .QJh in [8]. Jinzenji’s explicit formulae guarantee
the existence of QJh. Since the adapted family QJh automatically satisfies the conditions of the above theorem, .QJh
agrees with 2",

Corollary 7.2. The adapted family th agrees with 0h.

Inthecase N — k > 2, .QJh a priori agrees with the restricted Dubrovin connection 1-form .Qh, and hence so does
O,

In the case N — k = 1, the Dubrovin connection 1-form has a reduced operator different from that for the case of
N —k>2.

Theorem 7.3 (Givental). Let S = exp (—W) 1. The quantum differential system for M g =1 can be written as
dv = w(S* 0.

Note that S is not adapted. The above theorem implies

(N -1)lq

o = s* 0 = s*h = — Idt + 2"
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